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Single sample face recognition have become an important problem because of the limitations on the avail-

ability of gallery images. In many real-world applications such as passport or driver license identification,

there is only a single facial image per subject available. The variations between the single gallery face image

and the probe face images, captured in unconstrained environments, make the single sample face recogni-

tion even more difficult. In this paper, we present a fully automatic face recognition system robust to most

common face variations in unconstrained environments. Our proposed system is capable of recognizing faces

from non-frontal views and under different illumination conditions using only a single gallery sample for

each subject. It normalizes the face images for both in-plane and out-of-plane pose variations using an en-

hanced technique based on active appearance models (AAMs). We improve the performance of AAM fitting,

not only by training it with in-the-wild images and using a powerful optimization technique, but also by

initializing the AAM with estimates of the locations of the facial landmarks obtained by a method based on

flexible mixture of parts. The proposed initialization technique results in significant improvement of AAM fit-

ting to non-frontal poses and makes the normalization process robust, fast and reliable. Owing to the proper

alignment of the face images, made possible by this approach, we can use local feature descriptors, such as

Histograms of Oriented Gradients (HOG), for matching. The use of HOG features makes the system robust

against illumination variations. In order to improve the discriminating information content of the feature

vectors, we also extract Gabor features from the normalized face images and fuse them with HOG features

using Canonical Correlation Analysis (CCA). Experimental results performed on various databases outper-

form the state-of-the-art methods and show the effectiveness of our proposed method in normalization and

recognition of face images obtained in unconstrained environments.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Although face recognition has been a challenging topic in com-

uter vision for the past few decades, most of the attention was fo-

used on recognition based on face images captured in controlled en-

ironments. Capturing a face image naturally without controlling the

nvironment, so-called in the wild (Huang, Ramesh, Berg, & Learned-

iller, 2007; Le, 2013), may result in images with different illumi-

ation, head pose, facial expressions, and occlusions. The accuracy

f most of the current face recognition systems drops significantly

n the presence of these variations, specially in the case of pose and
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llumination variations (Moses, Adini, & Ullman, 1994; Zhao, Chel-

appa, Phillips, & Rosenfeld, 2003).

Regardless of the face variations in pose, illumination and facial

xpressions, we humans have an ability to recognize faces and iden-

ify persons at a glance. This natural ability does not exist in ma-

hines; therefore, we design intelligent and expert systems that can

imulate the recognition artificially (Haghighat, Zonouz, & Abdel-

ottaleb, 2015). Building deterministic or stochastic face models is

challenging task due to the face variations. However, normalization

an be used in a preprocessing step to reduce the effect of these vari-

tions and pave the way for building face models. Pose variations are

onsidered to be one of the most challenging issues in face recogni-

ion. Due to the complex non-planar geometry of the face, the 2D vi-

ual appearance significantly changes with variations in the viewing

ngle. These changes are often more significant than the variations

f innate characteristics, which distinguish individuals (Zhang & Gao,

009). In this paper, we propose a fully automatic single sample face
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recognition method that is capable of handling pose variations in un-

constrained environments. In the following two sections, we present

a literature review of related methods and our contributions in this

paper.

1.1. Related work

The Active Appearance Models (AAMs) proposed by (Cootes, Ed-

wards, & Taylor, 1998; 2001) have been used in face modeling for

recognition. After fitting the model to a face image, either the model

parameters, the location of the landmarks, or the local features ex-

tracted at the landmarks are used for face recognition (Edwards,

Cootes, & Taylor, 1998; Ghiass, Arandjelovic, Bendada, & Maldague,

2013; Hasan, Abdullaha, & Othman, 2013; Lanitis, Taylor, & Cootes,

1995) or facial expression analysis (Lucey et al., 2010; Martin, Werner,

& Gross, 2008; Tang & Deng, 2007; Trutoiu, Hodgins, & Cohn, 2013;

Van Kuilenburg, Wiering, & Den Uyl, 2005). For face recognition,

(Guillemaut, Kittler, Sadeghi, & Christmas, 2006) and (Heo & Sav-

vides, 2008) proposed using the normalized face images created by

warping the face images into the frontal pose.(Gao, Ekenel, & Stiefel-

hagen, 2009) improved the performance of this technique using a

modified piecewise affine warping. None of these methods, how-

ever, is fully automatic and they require a manual labeling or manual

initialization.

(Chai, Shan, Chen, & Gao, 2007) assumed that there is a linear

mapping between a non-frontal face image and the corresponding

frontal face image of the same subject under the same illumination.

They create a virtual frontal view by first partitioning the face image

into many overlapped local patches. Then, a local linear regression

(LLR) technique is applied to each patch to predict its correspond-

ing virtual frontal view patch. Finally, the virtual frontal view is gen-

erated by integrating the virtual frontal patches. (Li, Shan, Chen, &

Gao, 2009) proposed a similar patch-based algorithm; however, they

measured the similarities of the local patches by correlations in a

subspace constructed by Canonical Correlation Analysis. (Du & Ward,

2009) proposed a similar method based on the facial components.

Unlike (Chai et al., 2007) and (Li et al., 2009), where the face im-

age is partitioned into uniform blocks, the method in (Du & Ward,

2009) divides it into the facial components, i.e., two eyes, mouth and

nose. The virtual frontal view of each component is estimated sepa-

rately, and finally the virtual frontal image is generated by integrat-

ing the virtual frontal components. The common drawback of these

three patch-based approaches, (Chai et al., 2007; Du & Ward, 2009;

Li et al., 2009), is that the head pose of the input face image needs to

be known. Moreover, these methods require a set of prototype non-

frontal face patches, which are in the same pose as the input non-

frontal faces; hence, they cannot handle a continuous range of poses

and are restricted to a discrete set of predetermined pose angles.

(Blanz & Vetter, 2003) proposed a face recognition technique that

can handle variations in pose and illumination. In their method, they

derive a morphable face model by transforming the shape and texture

of example prototypes into a vector space representation. New faces

at any pose and illumination are modeled by forming linear combina-

tions of the prototypes. The morphable model represents shapes and

textures of faces as vectors in a high-dimensional space. The knowl-

edge of face shapes and textures is learned from a set of textured 3D

head scans. This method requires a set of manually annotated land-

marks for initialization and the optimization process often converges

to local minima due to a large number of parameters, which need to

be tuned. (Breuer, Kim, Kienzle, Scholkopf, & Blanz, 2008) presented

an automatic method for fitting the 3D morphable model; however,

their method seems to have a high failure rate (Asthana, Marks, Jones,

Tieu, & Rohith, 2011).

(Castillo & Jacobs, 2009) used the cost of stereo matching as a

measure of similarity between two face images in different poses.

This method does not construct a 3D face or a virtual frontal view;
owever, using stereo matching, it finds the correspondences be-

ween pixels in the probe and gallery images. This method requires

anual specification of feature points and in case of automatic fea-

ure matching, it is fallible in scenarios where an in-plane rotation is

resent between the image pair.

The method proposed by (Sarfraz & Hellwich, 2010) handles the

ose variations for face recognition by learning a linear mapping from

he feature vector of a non-frontal face to the feature vector of the cor-

esponding frontal face. However, their assumption of the mapping

eing linear seems to be overly restrictive (Asthana et al., 2011).

(Asthana et al., 2011) used several AAMs each of which covering a

mall range of pose variations. All these AAMs are fitted on the query

ace image and the best fit is selected. The frontal view is then synthe-

ized using the pose-dependent correspondences between 2D land-

ark points and 3D model vertices. (Mostafa, Ali, Alajlan, & Farag,

012; Mostafa & Farag, 2012) constructed 3D face shapes from stereo

air images. These 3D shapes are used to synthesize virtual 2D views

n different poses, e.g., frontal view. A 2D probe image is matched

ith the closest synthesized images using the local binary pattern

LBP) features (Ahonen, Hadid, & Pietikäinen, 2006). The drawback of

his method is the need for stereo images. In order to solve this prob-

em, the authors developed another method where the 3D shapes are

onstructed using only a frontal view and a generic 3D shape created

y averaging several 3D face shapes.

(Sharma, Al Haj, Choi, Davis, & Jacobs, 2012) proposed the

iscriminant Multiple Coupled Latent Subspace method for pose-

nvariant face recognition. They propose to obtain pose-specific rep-

esentation schemes so that the projection of face vectors onto the

ppropriate representation scheme will lead to correspondence in

he common projected space, which facilitates direct comparison.

hey find the sets of projection directions for different poses such

hat the projected images of the same subject in different poses are

aximally correlated in the latent space. They claim that the dis-

riminant analysis with artificially simulated pose errors in the latent

pace makes it robust to small pose errors due to subjectś incorrect

ose estimation.

(De Marsico, Nappi, Riccio, & Wechsler, 2013) proposed a face

ecognition approach, called “FACE”, in which an unknown face is

dentified based on the correlation of local regions from the query

ace and multiple gallery instances, that are normalized with respect

o pose and illumination, for each subject. For pose normalization, the

acial landmarks are first located by an extension of the active shape

odel (Milborrow & Nicolls, 2008) and then the in-plane face rota-

ion is normalized using the locations of the eye centers. The rows

n the best exposed half of the face are then stretched to a constant

ength. Then, the other side of the face image is reconstructed by

irroring the first half. The illumination normalization is performed

sing the Self-Quotient Image (SQI) algorithm (Wang, Li, Wang, &

hang, 2004), in which the intensity of each pixel is divided by the

verage intensity of its k × k square neighborhood.

(Ho & Chellappa, 2013) proposed a patch-based method for syn-

hesizing the frontal view from a given nonfrontal face image. In this

ethod, the face image is divided into several overlapping patches,

nd a set of possible warps for each patch is obtained by aligning it

ith frontal faces in the training set. The alignments are performed

sing an extension of the Lucas–Kanade image registration algorithm

Ashraf, Lucey, & Chen, 2010; Lucas & Kanade, 1981) in the Fourier do-

ain. The best warp is chosen by formulating the optimization prob-

em as a discrete labeling algorithm using a discrete Markov random

eld and a variant of the belief propagation algorithm (Komodakis &

ziritas, 2007). Each patch is then transformed to the frontal view

sing its best warp. Finally, all the transformed patches are com-

ined together to create a frontal face image. A shortcoming of this

ethod is that they divide both frontal and non-frontal images into

he same regular set of local patches. This division strategy results in

he loss of semantic correspondence for some patches when the pose
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ifference is large; therefore, the learnt patch-wise affine warps may

ose practical significance.

(Yi, Lei, & Li, 2013) proposed an approach for unconstrained face

ecognition that is robust against pose variations. A 3D deformable

odel is generated and a fast 3D model fitting algorithm is proposed

o estimate the pose of the face image. Then, a set of Gabor filters is

ransformed according to the pose and shape of the face image for

eature extraction. Finally, Principal Component Analysis (PCA) is ap-

lied on the Gabor features to eliminate the redundancies, then, the

ot product is used to compute the similarity between the feature

ectors.

Most recently, (Guo, Ding, & Xue, 2015) extended the Linear Dis-

riminant Analysis (LDA) approach to multi-view scenarios. Multi-

iew Linear Discriminant Analysis (MiLDA) is a subspace learning

ramework for multi-view data analysis based on graph embedding

Yan et al., 2007). The authors introduced a new measure of dis-

ance between projected vertex sets of intrinsic graphs to mitigate

he effect of the differences between views and preserve the intrin-

ic graphs. This distance is defined as the weighted sum of squared

uclidean distances between every cross-view data pair in two graph

mbedding models. Having sets of multi-view data, MiLDA aims to

nd a common subspace of higher discriminability between classes.

he transformed feature vectors in the common subspace are classi-

ed using a nearest neighbor classifier.

In a recent publication, (Gao, Zhang, Jia, Lu, & Zhang, 2015) pre-

ented a face recognition approach based on deep learning using a

ingle training sample per person. A deep neural network is an arti-

cial neural network with multiple hidden layers between the input

nd output layers. In (Gao et al., 2015), the authors propose a super-

ised auto-encoder to build the deep neural network by training a

onlinear feature extractor at each layer. After the layer-wise training

f each building block and building a deep architecture, the output

f the network is used for face recognition. One of the shortcomings

f this method is the manual cropping and alignment of the face im-

ges. It is also tested only on near frontal face images. The other well-

nown deep learning based algorithm, DeepFace (Taigman, Yang, Ran-

ato, & Wolf, 2014), focuses on solving the unconstrained face recog-

ition problem by learning a set of features in the image domain. It

ses a nine-layer deep neural network with more than 120 million

arameters. The high accuracy of DeepFace owes, to a great extent, to

ts enormous training database of 4.4 million labeled faces.

.2. Contributions

In this paper, we propose a fully automated single sample face

ecognition system suitable for images captured in unconstrained en-

ironments. The system is robust to pose and illumination variations,

hich usually affect images captured in the wild. The system includes

face normalization method based on an enhanced active appear-

nce model approach. We propose a novel initialization technique for

AM, which results in significant improvements in its fitting to non-

rontal poses and makes the normalization process robust and fast.

ur AAM is trained using face images in-the-wild, which cover a vast

ange of illumination, pose and expression variations.

In contrast with majority of the algorithms encountered in the lit-

rature, our proposed normalization algorithm is fully automatic and

andles a continuous range of poses, i.e., it is not restricted to any

redetermined pose angles. Moreover, it uses only a single gallery

mage and does not require additional non-frontal gallery images or

tereo images. Relying on the competence of our algorithm in nor-

alizing the face images, we can assume that the face images are

roperly aligned. This alignment allows us to use corresponding local

eature descriptors such as Histogram of Oriented Gradients (HOG)

Dalal & Triggs, 2005) for feature extraction, which makes the sys-

em robust against illumination variations. In addition, we fuse the
OG features with Gabor features using Canonical Correlation Anal-

sis (CCA) to have a more discriminative feature set.

It is worth mentioning that our system is capable of recognizing a

ace from a non-frontal view and under different illumination condi-

ions using only a single gallery image for each subject. This is impor-

ant because of its potential applications in many realistic scenarios

ike passport identification and video surveillance. Experimental re-

ults performed on the FERET (Phillips, Moon, Rizvi, & Rauss, 2000),

MU-PIE (Sim, Baker, & Bsat, 2002) and Labeled Faces in the Wild

LFW) (Huang et al., 2007) databases verify the effectiveness of our

roposed method, which outperforms the above-mentioned state-of-

he-art algorithms.

This paper is organized as follows: Section 2 describes our face

ormalization technique. Section 3 describes the feature extraction

nd fusion approaches used in the proposed system. The implemen-

ation details and experimental results are presented in Section 4. Fi-

ally, Section 5 concludes the paper.

. Preprocessing for face normalization

As stated in (Moses et al., 1994), “the variations between the im-

ges of the same face due to illumination and viewing direction are

lmost always larger than image variations due to change in face

dentity”. Pose variations cause major problems in real-world face

ecognition systems. In an unconstrained environment, there are usu-

lly in-plane and out-of-plane face rotations. In order to achieve bet-

er recognition results, we preprocess the facial images to handle

hese variations.

In this section, we present a pose normalization technique based

n piece-wise affine warping, which can normalize both in-plane

nd out-of-plane pose changes. The warping is applied on triangu-

ar pieces determined by enhanced active appearance models de-

cribed below. The overall process is illustrated in Fig. 1. In the fol-

owing sections, we describe the fitting and warping process of the

ctive appearance models and present a novel initialization tech-

ique for AAMs, which results in significant improvement in the fit-

ing accuracy.

.1. Active appearance models and piece-wise affine warping

Active appearance models have been widely used in pattern

ecognition research (Cootes et al., 1998). Face modeling has been the

ost ubiquitous application of AAMs. Given the model parameters,

AMs reconstruct a specific face via statistical models of shape and

ppearance. The model parameters are obtained by maximizing the

atch between the model instance and the face by fitting the AAM to

he input face image.

The shape, S, of an AAM, is defined by the coordinates of a set of

andmarks on the face. Learning the shape model requires annotating

hese landmarks on a training set of face images, then, applying prin-

ipal component analysis (PCA) to these shapes. The shape model of

specific face is expressed as a base shape, s0, plus a linear combina-

ion of the n shape eigenvectors, si, i = 1 , . . . , n,that correspond to

he n largest eigenvalues:

= s0 +
n∑

i=1

pisi , (1)

here pis are the shape parameters.

The appearance of an AAM is defined within the base shape, s0,

hich means that learning the appearance model requires removing

he shape variations. The appearance of an AAM is an image A(x),

here x is the set of pixels inside the base mesh s0 (x ∈ s0). In order

o obtain the appearance model, PCA is applied on these shape-free

mages. The appearance model of a specific face is expressed as a base
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Fig. 1. Warping the face image into the base (frontal) mesh. (a) Rotated face image. (b) Fitting mesh corresponding to the rotated face image. (c) Triangulated base (frontal) mesh,

s0. (d) Face image warped into the base mesh.

Fig. 2. Initialization problem in AAM fitting. (a) Initial shape used in POIC and SIC algorithms p = 0. (b) Initialization of the base mesh on the target face image. (c) Fitting result of

the Fast-SIC method after 100 iterations. (d) Result of the piecewise affine warping into the base mesh.
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appearance, a0, plus a linear combination of mappearance eigenvec-

tors, ai, i = 1 , . . . , mcorresponding to the m largest eigenvalues:

A(x) = a0(x) +
m∑

i=1

qiai(x) , (2)

where qis are the appearance parameters.

The shape and appearance parameters for a given face image are

obtained in the process of AAM fitting. Project-Out Inverse Compo-

sitional (POIC) algorithm (Matthews & Baker, 2004) and Simultane-

ous Inverse Compositional (SIC) algorithm (Gross, Matthews, & Baker,

2005) are two well-known algorithms for AAM fitting. SIC performs

significantly better than POIC on images of subjects that are not in-

cluded in the training. However, the computational cost of SIC is very

high (Baker, Gross, & Matthews, 2003). Recently, (Tzimiropoulos &

Pantic, 2013) proposed Fast-SIC, which reduces the computational

complexity of SIC. In our experiments, we use the Fast-SIC optima-

tization technique for fitting the AAM.

Let p = {p1, p2, . . . , pn}be the set of shape parameters obtained

from AAM fitting. As shown in Fig. 1, a piecewise affine warp,

(x; p),transfers a face instance into the base shape. After fitting the

AAM, each triangle in the AAM mesh has a corresponding triangle

in the base (frontal) mesh. Using the coordinates of the vertices in

the AAM mesh, the coordinates of the corresponding triangle in the

base mesh are computed from the current shape parameters pusing

Eq. (1). Using the coordinates of the vertices in corresponding trian-

gles, we compute an affine transformation for each triangle, such that

the vertices of the first triangle map to the vertices of the second

triangle (Matthews & Baker, 2004). For every pixel inside the target

triangle in the frontal mesh, the corresponding location in the AAM

mesh is calculated. Then, the value of this pixel is obtained based on

a nearest neighbor interpolation in the calculated location. This pro-

cess is applied to all the triangles and the synthesized frontal face is

created in the base mesh s0. In our approach, we use the warped face

within the base shape as the normalized face image. This step results

in a shape-free facial appearance (p = 0), which allows face identifi-

cation to be performed in the coordinates of the base shape.
.2. Proposed AAM initialization

Despite the popularity of the AAMs, there is no guarantee for ob-

aining correct fitting, specially when the images are not in near-

rontal pose. As mentioned before, both POIC and SIC algorithms use

he base mesh s0, when p = 0,as the initial shape model. The base

esh represents the mean shape of all the training samples, which is

sually in frontal pose as shown in Fig. 2(a). Typical fitting methods

se a face detection algorithm to find the face and then scale the base

esh to the size of the detected face and use it as the initial shape

odel. However, in semi-profile poses, this initialization sometimes

alls out of face region and if the algorithm starts with this mesh, it

ay not converge to the actual shape. Fig. 2(b) shows the initializa-

ion of the base mesh on a sample face image. The result of the AAM

tting using Fast-SIC method after 100 iterations is shown in Fig. 2(c).

ig. 2(d) shows the result of the piecewise affine warping into the

ase mesh, which is supposed to represent the normalized face

mage.

For better initialization, in this paper, we use the flexible mixture

f parts proposed in (Yang & Ramanan, 2011) to automatically ini-

ialize the locations of the landmarks. Every facial landmark with its

redefined neighborhood patch is defined as a part. The landmarks

n a face define a mixture of these parts, which are used to build a

ree graph to represent the spatial structure of the landmarks. Due to

he topological changes caused by pose variations, (Zhu & Ramanan,

012) proposed a model based on mixture of trees with a shared pool

f parts for face detection, pose estimation, and landmark localiza-

ion. We modified this approach to initialize the landmark locations

or our AAM.

Let I denote the facial image, in which li = (xi, yi)is a landmark

ocation in part i. For each viewpoint t, we define a tree graph Gt =
(Vt , Et ),where Vt⊆V, and V is the shared pool of parts. A configuration

f parts L = {li : i ∈ V}is scored as:

(I, L, t) =
∑
i∈Vt

ωti

i
.φ(I, li) +

∑
i, j∈Et

λ
ti,t j

i, j
.ψ(li, l j) + αt . (3)



M. Haghighat et al. / Expert Systems With Applications 47 (2016) 23–34 27

Fig. 3. Top view perspective of a human head in frontal and rotated poses.
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The first term in Eq. (3) is an appearance evaluation function, in-

icating how likely a landmark is in an aligned position. φ(I, li) is a

eature vector extracted from a neighborhood centered at li, where in

ur experiments, we use HOG features (Dalal & Triggs, 2005); and
ti
i

is a template for part i tuned for the mixture for viewpoint ti.

he second term is the shape deformation cost, i.e., computes the

ost associated with the relative positions of neighboring landmarks.
ti,t j

i, j
is used to encode parameters of rest location and rigidity, con-

rolling the shape displacement of part i relative to part j defined

s ψ(li, l j) = [dx dx2 dy dy2]T ,where dx = xi − x jand dy = yi − y j . Fi-

ally, the last term αtis a scalar bias associated with the mixture for

iewpoint t.

We seek to maximize S(I, L, t) over the landmark locations, L, and

iewpoint, t, and find the best configuration of parts. Since each mix-

ure is a tree-structured graph, maximization can be efficiently done

ith dynamic programming (Felzenszwalb & Huttenlocher, 2005) to

nd the global optimum solution.

Learning: To learn the model, a fully supervised scenario using

abeled positive and negative samples is used. Assume that {In, Ln,

n} and {In} denote the nth positive and negative samples, respec-

ively. The scoring function, Eq. (3), is linear in its parameters. Con-

atenating the parameters, we can write S(I, k) = μ.�(I, k),where

= (ω,α)and kn = (ln, tn). Now, learning the model can be formu-

ated as:

arg min
μ,ξn≥0

1

2
‖ μ ‖ +C

∑
n

ξn (4)

.t. ∀n ∈ pos μ.�(In, kn) ≥ 1 − ξn

∀n ∈ neg,∀k μ.�(In, k) ≤ −1 + ξn .
ig. 4. Our proposed initialization method for AAM fitting. (a) Estimated landmarks using

stimated landmarks. (c) Fitting result of the Fast-SIC method after only 5 iterations. (d) Resu
(Zhu & Ramanan, 2012) trained their model in 13 viewpoints

panning 180° with sampling every 15°. They used images from

MU Multi-PIE face database (Gross, Matthews, Cohn, Kanade, &

aker, 2010) with 68 facial landmarks in poses between −45◦and

45◦,and 39 facial landmarks in poses ± 60°, ± 75° and ± 90°. In

rder to cover the whole range of pose variations, we used the model

n (Zhu & Ramanan, 2012), which uses 900 positive samples from

ulti-PIE, and 1218 negative samples from INRIA Person database

Dalal & Triggs, 2005), including outdoor scenes with no people in

hem.

AAM Initialization: In the testing stage, since we use the landmarks

or the initialization of our AAM, in cases of detecting a mixture with

9 vertices (landmarks), we estimate the location of the remaining 29

andmarks based on the information obtained from the topology of

he facial landmarks in the viewpoint corresponding to the detected

ixture. Without loss of generality, if we assume that the top view of

human head is a circle with radius r, Fig. 3 shows the visible area

f the left and right sides of the face in frontal and rotated poses.

s illustrated, the ratio between the visible areas in two sides of the

ace is

= 1 − sin(θ )

sin(θ ) + cos(θ )
, (5)

being the pose angle.

In cases where the landmark localization stage selects a mix-

ure of 39 vertices, these landmarks are fitted on the best exposed

alf of the face. The selected mixture provides an estimation of the

ose angle, θ . γ , obtained from Eq. (5), is used as a scaling factor to

oughly calculate the location of the landmarks on the other half of

he face by relatively mirroring the current landmarks across the face

id-line.

The landmark localization algorithm based on the flexible mixture

f parts works very well in finding the contour of the face but it is not

ccurate enough in the more detailed regions such as the eyes or the

outh. Fig. 4(a) shows the result of this method on a sample face

mage.

In this paper, instead of using the base mesh, s0, we create the ini-

ial shape model for AAM using the estimated landmarks obtained

rom the flexible mixture of parts model. Fig. 4(b) shows the trian-

ularized initial mesh using these landmarks. The result of the AAM

tting using Fast-SIC method after only five iterations is shown in

ig. 4(c). It is clear from Fig. 4(c) that, using this initialization, the

tting is much more accurate. Fig. 4(d) shows the result of the piece-

ise affine warping into the base mesh, which in comparison with

ig. 2(d), provides a better representation of the face. In the rest

f this paper, we use these warped images as the normalized face

mages.
the flexible mixture of trees. (b) Triangularization of the initial mesh created by the

lt of the piecewise affine warping into the base mesh.
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Fig. 5. Histogram of Oriented Gradients (HOG) features in 4 × 4 cells.

Fig. 6. Gabor features in five scales and eight orientations.
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3. Feature extraction and fusion

The face images of an individual subject are similar to each other

and different from the face images of other subjects. However, face

images of an individual are not exactly the same either. The question

is how these changes are different from the changes between differ-

ent subjects. The proper alignment of the face images made possi-

ble by the proposed normalization technique reduces the variations

between feature vectors of the samples of the same subject, which

facilitates building a more accurate face model. In this section we de-

scribe the feature extraction techniques as well as the feature fusion

method employed in our approach.

3.1. Feature extraction

In our experiments, the normalized face images are resized to

120 × 120 pixels. We use two different techniques to extract fea-

tures from the normalized images. These techniques include Gabor

wavelet features (Haghighat, Zonouz, & Abdel-Mottaleb, 2013; Liu &

Wechsler, 2002) and Histogram of Oriented Gradients (HOG) (Dalal &

Triggs, 2005).

Since the face images are aligned, we can make use of local de-

scriptors such as the histograms of oriented gradients (HOG) (Dalal

& Triggs, 2005) for feature extraction. Here, we extract the HOG fea-

tures in 4 × 4 cells for nine orientations. We use the UOCTTI vari-

ant for the HOG presented in (Felzenszwalb, Girshick, McAllester, &

Ramanan, 2010). UOCTTI variant computes both directed and undi-

rected gradients as well as a four dimensional texture-energy feature,

but projects the result down to 31 dimensions, 27 dimensions corre-

sponding to different orientation channels and 4 dimensions captur-

ing the overall gradient energy in square blocks of four adjacent cells.

Fig. 5(b) shows the HOG features extracted from a sample face image

in Fig. 5(a)1.

On the other hand, we employ forty Gabor filters in five scales

and eight orientations. The most important advantage of Gabor

filters is their invariance to rotation, scale, and translation. Fur-

thermore, they are robust against photometric disturbances, such

as illumination change and image noise (Haghighat et al., 2015;

Kämäräinen, Kyrki, & Kälviäinen, 2006). Since the adjacent pixels in

an image are usually correlated, the information redundancy can be

reduced by downsampling the feature images that result from Gabor

filters (Liu & Wechsler, 2002). In our experiments, the feature images

are downsampled by a factor of five. Fig. 6 shows the Gabor features

for the normalized face image in Fig. 5(a). The dimensionality of both

Gabor and HOG feature vectors are reduced using principal compo-

nent analysis (PCA) (Turk & Pentland, 1991).
1 VLFeat open source library is used to extract and visualize the HOG features

(Vedaldi & Fulkerson, 2008).

m

λ
e

R

.2. Feature fusion using canonical correlation analysis

We combine the two feature vectors to obtain a single feature

ector, which is more discriminative than any of the input feature

ectors. This is achieved by using a feature fusion technique based

n Canonical Correlation Analysis (CCA) (Sun, Zeng, Liu, Heng, & Xia,

005).

Canonical correlation analysis has been widely used to analyze as-

ociations between two sets of variables. Suppose that X ∈ R
p×nand

∈ R
q×nare two matrices, each contains n training feature vectors

rom two different modalities. In other words, there are n samples for

ach of which (p + q)features have been extracted. Let Sxx ∈ R
p×pand

yy ∈ R
q×qdenote the within-sets covariance matrices of X and Y and

xy ∈ R
p×qdenote the between-set covariance matrix (note that Syx =

T
xy). The overall (p + q) × (p + q)covariance matrix, S, contains all

he information on associations between pairs of features:

=
(

cov(x) cov(x, y)
cov(y, x) cov(y)

)
=

(
Sxx Sxy

Syx Syy

)
. (6)

owever, the correlation between these two sets of feature vectors

ay not follow a consistent pattern, and thus, understanding the re-

ationships between these two sets of feature vectors from this matrix

s difficult (Krzanowski, 1988). CCA aims to find the linear combina-

ions, X∗ = W T
x Xand Y ∗ = W T

y Y,that maximize the pair-wise correla-

ions across the two data sets:

orr(X∗,Y ∗) = cov(X∗,Y ∗)
var(X∗).var(Y ∗)

, (7)

here cov(X∗,Y ∗) = W T
x SxyWy ,var(X∗) = W T

x SxxWxand var(Y ∗) =
T
y SyyWy . Maximization is performed using Lagrange multipliers by

aximizing the covariance between X∗and Y∗ subject to the con-

traints var(X∗) = var(Y ∗) = 1. The transformation matrices, Wxand

y, are then found by solving the eigenvalue equations (Krzanowski,

988):

S−1
xx SxyS−1

yy SyxŴx = �2Ŵx

S−1
yy SyxS−1

xx SxyŴy = �2Ŵy

, (8)

here Ŵxand Ŵyare the eigenvectors and �2 is the diagonal ma-

rix of eigenvalues or squares of the canonical correlations. The num-

er of non-zero eigenvalues in each equation is d = rank(Sxy) ≤
in(n, p, q),which will be sorted in decreasing order, λ1 ≥ λ1 ≥ ��� ≥

d. The transformation matrices, Wx and Wy , consist of the sorted

igenvectors corresponding to the non-zero eigenvalues. X∗, Y ∗ ∈
d×nare known as canonical variates. For the transformed data, the
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Fig. 7. (a) Self-occluded face image with 60° rotation. (b) Normalized face image with

a stretched half face.
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ample covariance matrix defined in Eq. (6) will be of the form:

∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 λ1 0 . . . 0
0 1 . . . 0 0 λ2 . . . 0
...

. . .
...

. . .

0 0 . . . 1 0 0 . . . λd

λ1 0 . . . 0 1 0 . . . 0
0 λ2 . . . 0 0 1 . . . 0
...

. . .
...

. . .

0 0 . . . λd 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above matrix shows that the canonical variates have nonzero

orrelation only on their corresponding indices. The identity matri-

es in the upper left and lower right corners show that the canonical

ariates are uncorrelated within each data set.

As defined in (Sun et al., 2005), feature-level fusion is performed

ither by concatenation or summation of the transformed feature

ectors:

1 =
(

X∗

Y ∗

)
=

(
W T

x X

W T
y Y

)
=

(
Wx 0
0 Wy

)T(
X
Y

)
, (9)

r

2 = X∗ + Y ∗ = W T
x X + W T

y Y =
(

Wx

Wy

)T(
X
Y

)
, (10)

here Z1 and Z2 are called the Canonical Correlation Discriminant

eatures (CCDFs). In this paper, we use the concatenation method

efined in Eq. (9). The fused feature vectors (Z) are used to build

ace models following using the face modeling approach presented

n (Haghighat, Abdel-Mottaleb, & Alhalabi, 2014). The query sample

s then classified as the nearest neighbor based on the Euclidean dis-

ance between the query’s model and the models in the gallery.

. Experimental setup and results

.1. Experimental setup: AAM training

In our experiments, we trained the AAMs using in-the-wild

atabases. For this purpose, we use three of the training sets pro-

ided for 300 Faces in-the-Wild Challenge (Sagonas, Tzimiropoulos,

afeiriou, & Pantic, 2013). These images contain large variations in

ose, expression, illumination and occlusion. These databases are La-

eled Face Parts in-the-Wild (LFPW) (Belhumeur, Jacobs, Kriegman,

Kumar, 2011), Helen (Le, Brandt, Lin, Bourdev, & Huang, 2012), and

database collected by Intelligent Behavior Understanding Group

IBUG) (Sagonas et al., 2013). LFPW database consists of 1, 035 anno-

ated images collected from Yahoo, Google, and Flickr. HELEN database

ontains 2, 330 annotated faces downloaded from Flickr. Most of the

xpressions in these two databases are neutral and smile. Therefore,

BUG database, which contains 135 highly expressive face images, is

dded to include a larger variety of facial expressions. In total, 3500

n-the-wild face images are used to train the AAM. Note that these

atabases are only used for training the AAM and since they are not

abeled, they are not employed in evaluating the recognition accuracy

f our system.

.2. Normalization performance

Here we discuss the self-occlusion problem in case of large pose

ariations. Fig. 7 shows a semi-profile face image with a large pose

ngle, where only a small fraction of the right side of the face is visi-

le. According to Eq. (5), for instance in the case of a 60° pose angle,

he visible area of the occluded side of the face shrinks by a factor

f 1 − sin(60◦) = 0.13,while for the other side of the face, the visi-

le area stretches by a factor of sin(60◦) + cos(60◦) = 1.36. The ratio

etween these two areas is less than 10%.
In the proposed normalization technique, after fitting the AAMs,

he face image is warped into the base frontal mesh. Since the ar-

as of the left and right halves of the base mesh have the same size,

he occluded side of the face will be over-sampled (stretched) in the

rocess of piecewise warping. In this case, a small misalignment in

he AAM fitting may cause a large error in the warped face image,

hich will result in a distorted half-face. Even if a semi-profile face is

erfectly fitted, the warped frontal view will still be distorted due to

he stretching (Gao et al., 2009). This phenomenon is clearly seen in

ig. 7, which has a 60° of face rotation. In the normalization process,

he right half of the face, i.e., the occluded half, is stretched, which

esults in a distorted half face. This distortion will have negative ef-

ect on the recognition accuracy. Therefore, in these cases, we only

se half of the face that corresponds to the visible side and ignore the

istorted half.

In order to automatically distinguish between the well-

ormalized and the distorted half-faces in semi-profile images,

e trained a two class minimum distance classifier using Discrete

osine Transform (DCT) features. This classifier is trained using 400

ell-normalized half-faces generated from frontal faces in the ba set

f FERET database (Phillips et al., 2000), and 400 distorted half-faces

andomly chosen from the hl and hr sets of FERET database, which in-

lude poses at −67.5◦and +67.5◦rotations. After face normalization,

his classifier uses the DCT features extracted from each half of the

ace to determine whether it is well-normalized or distorted. Based

n the outcome, we either use only the well-normalized side or the

hole face for identification. The complexity of this step is negligible

ot only because DCT features are very simple to calculate, but also

ecause the decision is made based on the Euclidean distances from

he centroids of only two classes.

In this following, we present several sets of experiments to

emonstrate the performance of our proposed face normalization

nd recognition system. We conduct three sets of experiments,

n three databases: Facial Recognition Technology (FERET) (Phillips

t al., 2000), CMU-PIE (Sim et al., 2002) and Labeled Faces in the Wild

LFW) (Huang et al., 2007).

.3. Experiments on FERET database

The first set of experiments was performed on the FERET b-

eries database (Phillips et al., 2000). It contains 2, 200 face im-

ges for 200 subjects, i.e., eleven images per subject. Three of

he images include frontal faces with different facial expressions
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Fig. 8. Symmetry issue in FERET database. The upper row includes the sample images

at +60° (bb) and the lower row shows the corresponding images at −60° (bi).
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and illuminations. These images are letter coded as ba, bj, and

bk. The other eight images are faces in different poses with

+60◦,+40◦,+25◦,+15◦,−15◦,−25◦,−40◦,and −60◦degrees of rota-

tion. These images are letter coded as bb, bc, bd, be, bf, bg, bh, and

bi, respectively. Fig. 8 shows these images for a sample subject along

with the results of the proposed normalization approach. Note that,

our proposed normalization approach is fully automatic and no man-

ual adjustments were needed in any of the 2200 samples.

In our experiments, only a single image, i.e., the frontal face im-

age with neutral expression labeled ba, is used for enrollment and

the remaining ten images with different poses, expressions, and illu-

mination conditions are used for testing. Table 1 shows the accuracy

of our proposed method for each set in comparison with previous

methods in the literature. Note that, the proposed method is eval-
Fig. 9. Face images of a sample subject from FERET b-series data

Table 1

Face recognition rates of different approaches in confrontation with different face di

sion, labeled ba, are used for training.

Face Trained bb bc

Method Alignment on FERET +60◦ +45◦

LGBP (Zhang et al., 2005) Automatic No – 51.0

PAN (Gao et al., 2009) Manual Yes 44.0 81.5

Asthana (Asthana et al., 2009) Manual Yes 32.5 74.0

Sarfraz (Sarfraz & Hellwich, 2010) Automatic Yes 78.0 89.0

3DPN (Asthana et al., 2011) Automatic No – 91.9

CLS (Sharma et al., 2012) Manual Yes 70.0 82.0

FRAD (Mostafa et al., 2012) Automatic No – 82.35

PIMRF (Ho & Chellappa, 2013) Automatic No – 91.5

PAF (Yi et al., 2013) Automatic No 93.75 98.0

FAR (Sagonas et al., 2015) Automatic No – 96.0

Proposed Method Automatic No 91.5 96.0
ated with all the pose angles presented in FERET database. How-

ver, only five of the previous methods used the images from all the

ose angles (Asthana, Sanderson, Gedeon, & Goecke, 2009; Gao et al.,

009; Sarfraz & Hellwich, 2010; Sharma et al., 2012; Yi et al., 2013),

nd the other studies (Asthana et al., 2011; Ho & Chellappa, 2013;

ostafa et al., 2012; Sagonas, Panagakis, Zafeiriou, & Pantic, 2015;

hang, Shan, Gao, Chen, & Zhang, 2005) only used a subset of the

ose angles.

The recognition rates for +60◦and +45◦poses (bb & bc) are less

han those for −60◦and −45◦poses (bi & bh). The reason goes back to

he setup of the FERET database in which the positive rotations are

lightly more than the negative ones. Fig. 9 shows examples of this

ifference. The upper row shows the sample images at +60◦(bb) and

he lower row shows the corresponding images at −60◦(bi) for the

ame subjects.

As seen in Table 1, our proposed algorithm outperforms the pre-

ious algorithms (Asthana et al., 2011; Asthana et al., 2009; Gao et al.,

009; Ho & Chellappa, 2013; Mostafa et al., 2012; Sagonas et al., 2015;

arfraz & Hellwich, 2010; Sharma et al., 2012; Yi et al., 2013; Zhang

t al., 2005) in most of the pose angles. In the case of high rotations

± 60°), the recognition rates are comparable with the best method

AF (Yi et al., 2013). It is worth mentioning that some of the methods

n Table 1 are not fully automatic and they require manual interven-

ion, some of these methods also use the same database (FERET) in

raining their normalization approach. However, our approach is fully

utomatic and does not use FERET database in training the normal-

zation technique.

Note that in (Ho & Chellappa, 2013) and (Asthana et al., 2011), if

he face and both eyes are not detected using the cascade classifiers,

Failure to Acquire (FTA) is reported and the image is not included

n the test set. However, we tested the recognition rate on all the 200

mages of each set and no images were excluded in the evaluation

rocess (no FTA is considered).
base (upper row), and their normalized faces (lower row).

stortions on the FERET database. The frontal face images with neutral expres-

bd be bf bg bh bi bj bk

+25◦ +15◦ −15◦ −25◦ −45◦ −60◦ expr. illum.

84.0 96.0 98.0 91.0 62.0 – – –

93.0 97.0 98.5 91.5 78.5 52.5 – –

95.5 98.5 98.0 93.0 87.0 48.0 – –

97.0 98.6 100 89.7 92.4 84.0 – –

97.0 97.5 98.5 98.0 90.5 – – –

90.0 95.0 96.0 94.0 85.0 79.0 – –

98.47 98.97 100 97.98 87.5 – – –

96.5 98.5 98.0 97.3 91.0 – – –

98.5 99.25 99.25 98.5 98.0 93.75 – –

100 100 100 99.0 96.5 – – –

100 100 100 100 99.0 93.0 99 100
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Fig. 10. Face images of a sample subject from CMU-PIE database (upper row), and their normalized faces (lower row).

Table 2

Face recognition rates of different approaches in confrontation with different pose changes on the CMU-PIE database. The frontal faces captured

by camera c27 is used for training.

Face Trained Gallery c11 c29 c07 c09 c05 c37

Method Alignment on PIE Size −45◦ −22.5◦ 22.5°up 22.5◦down +22.5◦ +45◦

LGBP (Zhang et al., 2005) Automatic No 67 71.6 87.9 78.8 93.9 86.4 75.8

LLR (Chai et al., 2007) Manual No 34 89.7 100 98.5 98.5 98.5 82.4

3ptSMD (Castillo & Jacobs, 2009) Manual No 34 97.0 100 100 100 100 100

Sarfraz (Sarfraz & Hellwich, 2010) Automatic No 68 83.8 86.8 – – 94.1 89.7

3DPN (Asthana et al., 2011) Automatic No 67 98.5 100 98.5 100 100 97.0

CLS (Sharma et al., 2012) Manual Yes 34 100 100 100 100 100 100

FRAD (Mostafa et al., 2012) Automatic No 68 95.6 100 100 100 100 100

PIMRF (Ho & Chellappa, 2013) Automatic No 67 97.0 100 98.5 100 100 97.0

PAF (Yi et al., 2013) Automatic No 68 100 100 100 100 100 100

MiLDA (Guo et al., 2015) Automatic No 68 90.30 99.58 – – 98.73 92.55

SSAE (Gao et al., 2015) Manual Yes 48 – 68.06 71.45 71.96 67.52 –

Proposed Method Automatic No 68 100 100 100 100 100 100
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2 We do not compare the proposed algorithm with the other well-known deep

learning based algorithm, DeepFace (Taigman et al., 2014), because we only use a sin-

gle gallery image, while DeepFace is trained using a large number of gallery images per

subject. Moreover, the code of DeepFace and the training dataset are not available and
.4. Experiments on CMU-PIE database

The second set of experiments were performed on CMU-PIE

atabase (Sim et al., 2002). This database consists of face images

aken from sixty eight subjects under thirteen different poses. Similar

o the previous methods (Asthana et al., 2011; Castillo & Jacobs, 2009;

hai et al., 2007; Ho & Chellappa, 2013; Mostafa et al., 2012; Sarfraz

Hellwich, 2010; Zhang et al., 2005), seven poses are used in our ex-

eriments. The frontal pose, labeled c27, is used as the gallery image.

he probe set consists of six non-frontal poses labeled as c37 and c11

the yawn angle about ± 45°), c05 and c29 (the yawn angle about ±
2.5°), and c07 and c09 (the pitch angle about ± 22.5°). Fig. 10 shows

hese images for a sample subject along with the results of applying

he proposed normalization method to them.

The performance of the proposed system is compared with the

tate-of-the-art approaches in (Asthana et al., 2011; Castillo & Jacobs,

009; Chai et al., 2007; Gao et al., 2015; Guo et al., 2015; Ho & Chel-

appa, 2013; Mostafa et al., 2012; Sarfraz & Hellwich, 2010; Sharma

t al., 2012; Yi et al., 2013; Zhang et al., 2005). Table 2 shows the out-

tanding accuracy of our proposed method for each pose in compar-

son with these methods. We obtain 100% accuracy in all sets. In our

xperiment, all the 68 subjects were employed for the evaluations;

owever, in some of the previous methods, e.g., (Asthana et al., 2011;

o & Chellappa, 2013; Zhang et al., 2005), the probe size is 67, be-

ause when their algorithm fails to normalize an image, they do not

onsider it as a recognition error and exclude that image from the test

et. Some methods, in Table 2, only used 34 subjects out of the 68, e.g.,

Castillo & Jacobs, 2009; Chai et al., 2007; Sharma et al., 2012). (Gao

t al., 2015) used 20 subjects for training their proposed deep neu-

al network and the remaining 48 subjects were for evaluation. It is

mportant to note that the deep learning based face recognition algo-
 w
ithm presented in (Gao et al., 2015) is not robust to pose variations

nd it is only tested in near frontal poses2.

.5. Experiments on LFW database

Our last experiment is on the Labeled Faces in the Wild (LFW)

Huang et al., 2007) database. LFW is one of the most challenging

atabases for evaluating the performance of face verification systems

n unconstrained environments. This database contains 13, 233 face

mages of 5, 749 subjects labeled by their identities. 1, 680 of these

ubjects have more than one face images. The images are collected

rom Yahoo! News in 2002-2003, and have a wide variety of variations

n pose, illumination, expression, scale, background, color saturation,

ocus, etc. Fig. 11 shows some sample images from this database and

ig. 12 shows the results of the proposed normalization method on

hese images. It is obvious from the figure that even with the changes

n pose, expression, illumination and occlusion, the normalization re-

ults are impressive as the faces are precisely detected and aligned.

In order to compare with a wide range of methods, we evaluated

ur proposed algorithm in two different experiments. The first ex-

eriment follows the directions used in (Cox & Pinto, 2011; Hussain,

apoléon, & Jurie, 2012; Yi et al., 2013). As in (Cox & Pinto, 2011),

he LFW dataset is organized into two disjoint sets: ‘View 1’ is used

s gallery whereas ‘View 2’ is used for probe. Although (Cox & Pinto,

011; Hussain et al., 2012; Yi et al., 2013) use the aligned version of
e do not have the resources to handle such data in laboratory environment.
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Fig. 11. Sample images of three subjects from LFW database.

Fig. 12. Normalized face images corresponding to the ones shown in Fig. 11.

Table 3

Mean classification accuracy of different approaches following the first experi-

ment on LFW database.

BIF I-LQP PAF Proposed

(Cox & Pinto, 2011) (Hussain et al., 2012) (Yi et al., 2013) Method

88.13 86.20 87.77 91.46
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the faces provided by (Wolf, Hassner, & Taigman, 2010), we use the

original version of the LFW database and all face images are aligned

using our normalization technique described in Section 2. The mean

classification accuracies of the proposed method and the methods

following the same protocol are shown in Table 3.

Although LFW is basically designed for metric learning for face

verification, (De Marsico et al., 2013) evaluated some of the most

popular face recognition algorithms as well as their own method

on a subset of this database. This subset is made from the first

fifty subjects who have at least eight images. Five of the images are

used as gallery images and three as probes. We used the same set-

ting to evaluate the performance of our proposed method. Table 4

shows the performance of our proposed system in comparison with

the Eigenface approach (Turk & Pentland, 1991), which is based on

PCA, Independent Component Analysis (ICA) method proposed in

(Bartlett, Movellan, & Sejnowski, 2002), Incremental Linear Discrimi-
Table 4

Face recognition rates of different approaches following the second experiment on

PCA ICA ILDA SVM

(Turk & Pentland, 1991) (Bartlett et al., 2002) (Kim et al., 2007) (Guo e

37 41 48 45
ant Analysis (ILDA) approach (Kim, Wong, Stenger, Kittler, & Cipolla,

007), a method using Support Vector Machines (SVM) (Guo, Li, &

han, 2000), a recent approach based on Hierarchical Multiscale LBP

HMLBP) (Guo, Zhang, & Mou, 2010), and the method called “FACE”

roposed in (De Marsico et al., 2013), which is the most recent

ethod evaluated on this dataset.

Table 4 shows that our proposed system outperforms all

he above-mentioned methods including the recent method pro-

osed in (De Marsico et al., 2013) with an impressive margin of

6% in the recognition rate. Note that the experiments are per-

ormed using the original, not the aligned, version of the LFW

atabase.

. Conclusions and future work

In this paper, we proposed a single sample face recognition sys-

em for real-world applications in unconstrained environments. The

otential application of this system is in many realistic scenarios

ike passport identification and video surveillance. The proposed sys-

em is fully automatic and robust to pose and illumination vari-

tions in face images. The system synthesizes the frontal views

sing a piece-wise affine warping. The warping is applied to the tri-

ngles of a mesh determined by an enhanced AAM. In order to en-

ance the fitting accuracy, we initialize the AAM using estimates of

he facial landmark locations obtained by a method based on flexible

ixture of parts. The fitting accuracy is further improved by train-

ng the AAM with in-the-wild images and using a powerful opti-

ization technique. Experimental results demonstrated the efficacy

f our proposed fitting approach. HOG and Gabor wavelet features

re extracted from the synthesized frontal views. We use CCA to fuse

hese two feature sets into a single but more discriminative feature

ector.

In contrast with other state-of-the-art methods, our approach

ses only a single gallery image and does not require additional non-

rontal gallery images or stereo images. It is also fully automatic

nd does not require any manual intervention. Moreover, it han-

les a wide and continuous range of poses, i.e., it is not restricted to

ny predetermined pose angles. Experimental results performed on

ERET, CMU-PIE and LFW databases demonstrated the effectiveness

f our proposed method, which outperforms the state-of-the-art al-

orithms.

Our algorithm works very well in normalizing the near-frontal

oses; however, its main weakness is in normalizing facial images

ith large pose variations. In semi-profile poses, half of the face is

sually occluded, which results in a distorted normalized face. This

istortion has a negative impact on the recognition accuracy. Al-

hough we use the other well-normalized half of the face for recog-

ition, the accuracy in these cases is still low. Another limitation of

he proposed method is that it does not handle the normalization of

acial expressions.

In the future, we will investigate the possibility of synthesizing

rontal faces with neutral expression to make the system invariant

o facial expressions. We will also investigate the use of features

hat are less invariant to aging variations. This will make the sys-

em more reliable in recognizing people from images that have been

aken with large time gaps. Moreover, we plan to design an intel-

igent system that can integrate multiple sources of biometric in-

ormation, e.g., frontal face, profile face and ear, to obtain a more
LFW database.

HMLBP FACE Proposed

t al., 2000) (Guo et al., 2010) (De Marsico et al., 2013) Method

49 61 87.3
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eliable recognition. Fusion of multiple biometric modalities can be

pplied at different levels of a recognition system, i.e., at feature level,

atching-score level, or decision level. We plan to find a method that

ot only increases the accuracy of the system but also is computa-

ionally efficient.
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